首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19704篇
  免费   1019篇
  国内免费   244篇
电工技术   94篇
综合类   174篇
化学工业   7800篇
金属工艺   1245篇
机械仪表   150篇
建筑科学   90篇
矿业工程   125篇
能源动力   3221篇
轻工业   393篇
水利工程   20篇
石油天然气   133篇
武器工业   10篇
无线电   1912篇
一般工业技术   4669篇
冶金工业   288篇
原子能技术   92篇
自动化技术   551篇
  2024年   24篇
  2023年   1728篇
  2022年   616篇
  2021年   751篇
  2020年   1520篇
  2019年   1282篇
  2018年   491篇
  2017年   1231篇
  2016年   1210篇
  2015年   1243篇
  2014年   1488篇
  2013年   1174篇
  2012年   956篇
  2011年   944篇
  2010年   682篇
  2009年   865篇
  2008年   310篇
  2007年   877篇
  2006年   850篇
  2005年   432篇
  2004年   261篇
  2003年   327篇
  2002年   415篇
  2001年   370篇
  2000年   254篇
  1999年   313篇
  1998年   141篇
  1997年   51篇
  1996年   123篇
  1995年   15篇
  1992年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   2篇
  1975年   2篇
  1966年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
71.
The polymer electrolyte based solid-state lithium metal batteries are the promising candidate for the high-energy electrochemical energy storage with high safety and stability. Moreover, the intrinsic properties of polymer electrolytes and interface contact between electrolyte and electrodes have played critical roles for determining the comprehensive performances of solid-state lithium metal batteries. In this review, the development of polymer electrolytes with the design strategies by functional units adjustments are firstly discussed. Then the interfaces between polymer electrolyte and cathode/anode, including the interface issues, remedy strategies for stabilizing the interface contact and reducing resistances, and the in-situ polymerization method for enhancing the compatibilities and assembling the batteries with favorable performances, have been introduced. Lastly, the perspectives on developing polymer electrolytes by functional units adjustment, and improving interface contact and stability by effective strategies for solid-state lithium metal batteries have been provided.  相似文献   
72.
Poly(3-hydroxyalkanoate)s, PHAs, have been covalently grafted onto the surface of multi-walled carbon nanotubes, MWCNTs, providing nanofillers (MWCNT-graft-PHAs) with enhanced compatibility and reinforcement effect towards PHAs. MWCNTs were first modified by in-situ generated diazonium cations obtained from a hydroxyl-containing aniline derivative, yielding MWCNTs with reactive hydroxyl surface groups, MWCNT-OH. Then, MWCNT-graft-PHAs were obtained by direct, i.e. without using any catalyst, transesterification approach. The successful chemical modification of MWCNTs surface was evidenced by Raman spectroscopy and XPS analysis confirming the covalent grafting of PHA on MWCNT. 3-Dimension mats were further produced through electrospinning of a PHA/MWCNT-graft-PHA solution providing nanocomposites with well-defined nanofibrous morphology. No aggregation of the MWCNTs was evidenced by SEM attesting that the grafting of PHA onto MWCNT improved their dispersion within the PHA matrix and consequently, the properties of the corresponding nanomaterials. Indeed, mechanical analysis results have shown that nanofibers loaded with MWCNT-graft-PHA (3 wt%) displayed excellent properties with an increase (+41%) of the tensile strain at break without any decrease of the high elastic modulus as compared to pristine PHA (131 MPa).  相似文献   
73.
The low energy density of supercapacitors, especially supercapacitors based on aqueous electrolytes, is the main factor limiting their application, and the energy density is closely related to the operating potential window of the supercapacitor. The polymer electrolyte is the main contributor to the safe operation and good ion conductivity of the supercapacitor. In this study, a crosslinked quaternized poly(arylene ether sulfone) (PAES) membrane was prepared via crosslinking during membrane formation with a thermal-only treatment and applied in an electric double-layer capacitor (EDLC). The pre-prepared PAES membrane formed a polymer electrolyte with 1 mol/L Li2SO4 and was then fabricated into an EDLC single cell. The properties of both the membrane and ELDC were investigated. The preferred cPAES-N-0.2 polymer electrolyte showed an ionic conductivity of 1.18 mS/cm. The optimized EDLC exhibited a single-electrode gravimetric capacitance of 104.92 F/g at a current density of 1.0 A/g and a high operating potential window (1.5 V); it, thereby, achieved a high energy density of 8.20 W h/kg. The EDLC also exhibited excellent cycling properties over 3000 charge–discharge cycles. The crosslinked structures promoted the tensile strength and thermal stability of the PAES membranes; this was accompanied by a slight decrease in the ionic conductivity. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47759.  相似文献   
74.
Perovskite ferroelectrics possess the fascinating piezoelectric properties near a morphotropic phase boundary, attributing to a low energy barrier that the results in structural instability and easy polarization rotation. In this work, a new lead-free system of (1-x)BaTiO3-xCaHfO3 was designed, and characterized by a coexistence of ferroelectric rhombohedral-orthorhombic-tetragonal (R-O-T) phases. With the increase amount of CaHfO3 (x), a stable coexistence region of three ferroelectric phases (R-O-T) exists at 0.06  x  0.08. Both large piezoelectric coefficient (d33~400 pC/N), inverse piezoelectric coefficient (d33*~547 pm/V) and planar electromechanical coupling factor (kp~58.2%) can be achieved for the composition with x = 0.08 near the coexistence of three ferroelectric phases. Our results show that the materials with the composition located at a region where the three ferroelectric R-O-T phases coexist would have the lowest energy barrier and thus greatly promote the polarization rotation, resulting in a strong piezoelectric response.  相似文献   
75.
We compare the current density–voltage (JV) and magnetoconductance (MC) response of a poly(3-hexyl-thiophene) (P3HT) device (Au/P3HT(350 nm)/Al) before and after annealing above the glass transition temperature of 150 °C under vacuum. There is a decrease of more than 3 orders of magnitude in current density due to an increase of the charge injection barriers after de-doping through annealing. An increase, approaching 1 order of magnitude, in the negative MC response after annealing can be explained by a shift in the Fermi level due to de-doping, according to the bipolaron mechanism. We successfully tune the charge injection barrier through re-doping by photo-oxidation. This leads to the charge injection and transport transitioning from unipolar to ambipolar, as the bias increases, and we model the MC response using a combination of bipolaron and triplet-polaron interaction mechanisms.  相似文献   
76.
Highly textured TiB2 ceramics were prepared by slip casting an aqueous suspension in a magnetic field of 9 T, followed by sintering using Field Assisted Sintering Technology (FAST). Particle size refinement by ball milling improved both the degree of texturing and densification of the material (RD > 98 %). The sintered material exhibited a Lotgering orientation factor of 0.90, with the c-axis of TiB2 oriented parallel to the magnetic field and FAST pressing direction. The texturing effect induced by the uniaxial pressing was negligible. The textured TiB2 material exhibited a significant anisotropy in mechanical properties; the values of hardness and indentation elastic modulus measured along directions transverse to the c-axis of TiB2 were 37 % and 13 % higher than the ones measured along the c-axis direction. Moreover, the specific wear rate of a surface of textured TiB2 parallel to the field was one order of magnitude lower than a surface perpendicular to the field.  相似文献   
77.
Porous carbon nanostructures are promising supports for stabilizing the highly dispersed metal nanoparticles and facilitating the mass transfer during the reaction, which are critical to achieve the high efficiency of hydrogen generation from sodium borohydride dehydrogenation. Herein, the catalytically active porous architectures are simply prepared by using 2-methylimidazole and melamine as reactive sources. The structural and compositional characterizations reveal the coexistence of metallic cobalt and N-doped carbon in porous architectures. Electron microscopy observations indicate that the synthesized products are smartly constructed from the carbon nanosheets with densely dispersed Co nanoparticles. Due to the notable structural features, the prepared Co@NC-600 sample presents the highly efficient activity for catalytic hydrolysis of NaBH4 with a hydrogen generation rate of 2574 mL min−1 gcat−1 and an activation energy of 47.6 kJ mol−1. The catalytically active metallic Co and suitable support-effect of N-doped carbon are responsible for catalytic dehydrogenation.  相似文献   
78.
Developing high-efficiency and low-cost catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) is significant and critical for the exploitation and utilization of hydrogen energy. Herein, the in-situ fabrication of well-dispersed and small bimetallic RuNi alloy nanoparticles (NPs) with tuned compositions and concomitant hydrolysis of AB are successfully achieved by using graphitic carbon nitride (g-C3N4) as a NP support without additional stabilizing ligands. The optimized Ru1Ni7.5/g-C3N4 catalyst exhibits an excellent catalytic activity with a high turnover frequency of 901 min?1 and an activation energy of 28.46 kJ mol?1 without any base additives, overtaking the activities of many previously reported catalysts for AB hydrolysis. The kinetic studies indicate that the AB hydrolysis over Ru1Ni7.5/g-C3N4 is first-order and zero-order reactions with respect to the catalyst and AB concentrations, respectively. Ru1Ni7.5/g-C3N4 has a good recyclability with 46% of the initial catalytic activity retained even after five runs. The high performance of Ru1Ni7.5/g-C3N4 should be assigned to the small-sized alloy NPs with abundant accessible active sites and the synergistic effect between the composition-tuned Ru–Ni bimetals. This work highlights a potentially powerful and simple strategy for preparing highly active bimetallic alloy catalysts for AB hydrolysis to generate hydrogen.  相似文献   
79.
As an industrial pollutant, tar derived from biomass gasification is used as the precursor for fabricating a novel carbon-metal hydroxides composite electrode. A slurry (the mixture of tar, KOH and melamine) is daubed uniformly onto the nickel foam, which is directly carbonized to form NPC@LDH electrode material. This electrode is further coated with NiCo-LDH nanosheets using an electrodeposition method to form NF@NPC@LDH. The newly made NF@NPC@LDH electrode exhibits a high specific capacity of 9.6 F cm−2 at a current density of 2 mA cm−2 and good rate performance (55.3% retention). Furthermore, a hybrid NF@NPC@LDH//NF@PC all-solid-state supercapacitor is fabricated, and the device exhibits high energy density of 1.28 mWh cm−3 at a power density of 8.04 mW cm−3, low resistance and good cycling stability.  相似文献   
80.
《Ceramics International》2020,46(13):20993-20999
Titanium nitride (TiN) as an alternative plasmonic ceramic material with superb properties including high hardness, outstanding corrosion resistance and excellent biocompatibility, has exhibited great potential for optical biochemical sensing applications. By sputtering about 35 nm–50 nm TiN on glass (f-TiN), the surface was found to provide sensing capability toward NaCl solution through the phenomenon of surface plasmon resonance. When the TiN film of about 27 nm–50 nm in thickness was sputtered onto a roughened glass surface (R–TiN), the sensing capability was improved. This was further improved when holes at nanoscale were created in the TiN film of about 19 nm–27 nm in thickness (NH–TiN). The roughened surface and nanohole patterns provided confinement of surface plasmons and significantly improved the sensitivity toward the local refractive index changes. In detail, the calculated refractive index resolution (RIR) of the optimal NH–TiN sensors for NaCl was found to be 9.5 × 10−8 refractive index unit (RIU), which had outperformed the f-TiN and R–TiN sensors. For biosensing, the optimized NH–TiN sensor was found to be capable to detect both small and large biomolecules, i.e. biotin (molecular weight of 244.3 g/mol) and human IgG (160,000 g/mol), in a label-free manner. Especially, the NH–TiN sensor significantly improved sensitivity in detecting small molecules due to the localized plasmonic confinement of electromagnetic field. Combining with the excellent mechanical and durability properties of TiN, the proposed NH–TiN can be a strong candidate for plasmonic biosensing applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号